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Ozet

Bu ¢alismada, Dikkat Eksikligi ve Hiperaktivite Bozuklugu (DEHB) tanisinda elektroensefalografi (EEG) sinyal-
lerinin gelismis topluluk makine 6grenmesi (Advanced Ensemble Machine Learning) yaklagimlari ile analizi
gerceklestirilmistir. 60 Hertz kesme filtresi (60 Hz Notch Filter) kullanilarak, 121 kisilik (61 DEHB, 60 kon-
trol) kapsaml veri kiimesi tizerinde ¢oklu karmagiklik analizi (Multi-Complexity Analysis) ve gelismis topluluk
siiflandirma metodolojisi uygulanmustir. Gelistirilmis Higuchi Fraktal Boyutu (Enhanced Higuchi Fractal Di-
mension), Gii¢ Spektral Ozellikleri (Power Spectral Features), Hjorth Parametreleri (Hjorth Parameters) ve Is-
tatistiksel Ozellikler (Statistical Features) gibi dort farkli 6zellik ¢cikarma yontemi birlegtirilerek her kisi i¢in 399
ozellik ¢ikarilmigtir. Yumusak Oylama (Soft Voting) topluluk yaklasimi en yiiksek performansi gostererek %79.5
dogruluk (Accuracy) ve %79.0 F1-puani (F1-Score) elde edilmistir. 10 katmanl ¢apraz dogrulama (10-Fold Cross-
Validation) ile giicli degerlendirme yapilmis ve tiim performans 6l¢iitleri icin giiven araliklar: hesaplanmustir.
Bu ¢alisma, 60 Hertz gii¢ hatt1 girisimi eliminasyonu ile DEHB-EEG analizinde yeni bir metodolojik standart
belirleyerek, klinik uygulamaya yonelik yiiksek dogruluklu nesnel tani destegi sunmaktadir.
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Abstract

In this study, electroencephalography (EEG) signal analysis using advanced ensemble machine learning ap-
proaches was performed for Attention Deficit Hyperactivity Disorder (ADHD) diagnosis. Using a 60 Hertz
notch filter, multi-complexity analysis and advanced ensemble classification methodology were applied to a
comprehensive dataset of 121 individuals (61 ADHD, 60 control). Four different feature extraction methods
including Enhanced Higuchi Fractal Dimension, Power Spectral Features, Hjorth Parameters, and Statistical
Features were combined to extract 399 features per individual. The Soft Voting ensemble approach showed the
highest performance, achieving 79.5% accuracy and 79.0% F1-score. Robust evaluation was performed with 10-
fold cross-validation and confidence intervals were calculated for all performance metrics. This study establishes
a new methodological standard in ADHD-EEG analysis through 60 Hertz power line interference elimination,
providing high-accuracy objective diagnostic support for clinical applications.
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1. Giris

Dikkat Eksikligi Hiperaktivite Bozuklugu (DEHB), ¢cocuklarda en sik goriilen norogelisimsel bozukluklar-
dan biridir ve ayni zamanda bu rahatsizliklar arasinda en sik yanlis teshis edilenlerden biri olarak kabul
edilir. Bu durum kismen, tani siirecinde kullanilan davranigsal gézlemlerin ve degerlendirme 6lgeklerinin
oznel ve keyfi yapisindan kaynaklanmaktadir. Bu 6znel ve niceliksel olmayan degerlendirme yontemleri
yanlig tani riski tagimaktadir. Yanlis taniya dayali uygunsuz ilag tedavisinin hastalar icin uzun vadeli olum-
suz sonuglara yol acabilecegi bilinmektedir. Bu ¢aligmanin temel amaci, elektroensefalogram (EEG) ver-
ilerini analiz etmek i¢in gelismis topluluk makine 6grenmesi teknikleri kullanan nesnel ve niceliksel bir
DEHB tam teknigi gelistirmek ve boylece 6znel degerlendirme yontemleriyle iligkili yanlig tani riskini or-
tadan kaldirmaktir. Geleneksel tani yontemleri ve 6znel davranigsal degerlendirme 6lgekleri, farkli tani uz-
manlarimin deneyim ve yorumlarina dayanmaktadir. Bu dinamik siireg, asir1 doz, uygunsuz tedavi ve uzun
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vadeli psikolojik sonuclar gibi olumsuz etkilere yol agabilen yanlis tani riski tasimaktadir. EEG sinyallerinin
beyin aktivitesini nesnel ve nicel olarak 6lgebilmesi nedeniyle, DEHB tanisi i¢in giivenilir biyobelirteclerin
elde edilebilecegi varsayilmaktadir.

2. Metodoloji

2.1 Veri seti ve 6n isleme

Bu calismada IEEE Dataport’tan alinan DEHB veri seti (ADHD Dataset) kullanilmigtir [23]. Veri seti 61
DEHB’li ¢ocuk ve 60 saglikli ¢cocuktan olusmaktadir. Yag aralifi 7-12 yas arasindadir. DEHB tanisinda
makine 6grenimi yontemleri literatiirde yaygin olarak kullanilmaktadir [23].

2.1.1 EEG kayit parametreleri

Bu calisgmada kullanilan EEG veri seti, standart 10-20 uluslararasi elektrot yerlesim sistemi (10-20 Inter-
national Electrode Placement System) gore 19 kanaldan kayit edilmistir. Kullanilan kanallar sunlardir: Fz,
Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4, T5, T6, O1 ve O2. Bu kanal secimi, beynin farkli
bolgelerinden (frontal, central, parietal, temporal ve oksipital) bilgi toplayarak kapsaml bir analiz sagla-
maktadir. Ornekleme frekansi (Sampling Frequency) 128 Hertz olarak ayarlanmugtir. Ayrica 60 Hertz kesme
filtresi (60 Hz Notch Filter) uygulanarak gii¢ hatt1 girisimi (Power Line Interference) eliminasyonu gercek-
lestirilmistir. Her kayit 60 saniye siirmekte ve toplam 15,000 6rnek noktasi (Sample Points) icermektedir.
Referans elektrotlar1 olarak A1l ve A2 (kulak memesi) kullanilmigtir. Bu referans sistemi, standart klinik
EEG uygulamalarinda yaygin olarak kullanilan ve giivenilir sonuglar veren bir yaklagimdur.

DEHB EEG Kanal Yerlesimi - Detayli Beyin Isi Haritasi
19 Kanal - 10-20 Uluslararasi’Sistettf™°Gercek Anatomik Pozisyonlar
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Figure 1. DEHB EEG analizi igin detayli 19 kanal yerlesimi - Ger¢ek anatomik pozisyonlarla beyin isi haritasi gériinimii
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Analiz Sonuglari:
« En lyi Model: Soft Voting
« Dogruluk: 79.5% * 8.6%
« Kesinlik: 82.8% +9.1%
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EEG-DEHB’de Azalan Aktivite: Parietal ve Occipital Bolgeler

Figure 2. DEHB EEG aktivite isI haritasi - Aktivite paternleri (79.5% dogruluk, 121 denek)

2.1.2 60 Hertz standardinda 6n isleme adimlar:

EEG sinyallerine 60 Hertz standardinda kapsamli 6n igleme adimlar1 (Preprocessing Steps) uygulanmisgtir.
Bu siireg, sinyal kalitesini artirmak ve analiz sonuclarimin giivenilirligini saglamak i¢in kritik neme sahip-
tir. Ilk olarak, 60 Hertz gii¢c hatt1 frekansina karsi kesme filtresi (Notch Filter) uygulanmistir. Bu filtre,
elektrik sebekesinden kaynaklanan girisimi ortadan kaldirarak temiz EEG sinyali elde edilmesini sagla-
maktadir. Ardindan, veri format1 diizenleme iglemi (Data Format Conversion) gerceklestirilmigtir. Mat-
lab dosyalarindan (19 x 15,000) matris formatinda veri ¢ikarimi yapilarak, analiz i¢in uygun hale getir-
ilmigtir. Frekans alaninda filtreleme islemi (Frequency Domain Filtering) olarak, 0.5-60 Hertz araliginda
bant geciren filtre (Bandpass Filter) uygulanmigtir. Bu aralik, EEG sinyallerinde klinik olarak anlaml olan
delta, teta, alfa, beta ve gama dalga bantlarini kapsamaktadir. Diigiik frekanslarda 0.5 Hertz alt sinuri, yavas
dalga aktivitesini korurken, tist sinir olan 60 Hertz ise yliksek frekansh giiriiltityli elimine etmektedir.

DEHB EEG Frekans Bantlari Analizi
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Figure 3. DEHB ve kontrol gruplarinda EEG frekans bantlari glic dagilimi

Artifact temizleme islemi (Artifact Removal), 5 standart sapma esigi (5 Standard Deviation Threshold) kul-
lanilarak gergeklestirilmistir. Bu yontem, asir1 degerlerin tespit edilmesini ve bunlarin medyan degerlerle
degistirilmesini saglamaktadir. Segmentasyon isleminde (Segmentation), her kayit 1.0 saniyelik parcalara
boliinerek toplam 33,676 segment elde edilmistir. Bu segmentasyon, temporal ¢6ziiniirligii artirmakta ve
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makine dgrenmesi algoritmalarinin daha detayli analiz yapmasina olanak tanimaktadir. Son olarak, Z-skor
normalizasyonu (Z-Score Normalization) uygulanarak her 6zellik i¢in ortalama sifir ve standart sapma bir
olacak sekilde standardizasyon (Standardization) saglanmustir. Bu islem, farkli 6lceklerdeki 6zelliklerin
makine 6grenmesi algoritmalarinda esit agirlikta degerlendirilmesini garanti etmektedir.

2.2 Gelismis topluluk makine 6grenmesi yaklasimi

Bu calismada, gelismis topluluk 6grenmesi teknikleri (Advanced Ensemble Learning Techniques) uygu-
lanmustir. Topluluk 6grenmesi yaklasimi (Ensemble Learning Approach), birden fazla makine 6grenmesi
modelinin gii¢lii yanlarini birlestirerek daha giivenilir ve dogru tahminler iretmeyi amaclamaktadir. Bu
yaklasim, tek bir modelin sinirhliklarini asarak genelleme performansini (Generalization Performance)
artirmaktadir.

2.2.1 Temel modeller

Topluluk 6grenmesi yaklagiminda, farkli 6grenme paradigmalarini temsil eden bes temel model kullanilmisgtir.
Bu modeller, hem dogrusal hem de dogrusal olmayan siniflandirma yeteneklerine sahip olup, farkli veri
oruntilerini yakalayabilmektedir.

Rastgele Orman (Random Forest) modeli, karar agaclarinin toplulugu (Ensemble of Decision Trees)
olarak calismaktadir. Bu modelde 200 aga¢ kullanilmis olup, asir1 6grenmeyi (Overfitting) 6nlemek icin
maksimum derinlik sinirlandirilmamigtir. Minimum 6rnek bélme sayis1 (Minimum Samples Split) 2 olarak
ayarlanmus ve paralel igsleme (Parallel Processing) i¢in tiim islemci ¢ekirdekleri kullanilmigtir. Rastgele Or-
man, 6zellik 6nemini degerlendirme (Feature Importance Evaluation) konusunda mitkemmel yeteneklere
sahiptir.

Lojistik Regresyon (Logistic Regression) modeli, dogrusal simiflandirma (Linear Classification) igin
kullanilmigtir. Maksimum iterasyon sayist (Maximum Iterations) 1000 olarak belirlenmis ve diizenleme
parametresi (Regularization Parameter) C degeri 1.0 olarak ayarlanmigtir. Bu model, 6zellikler arasindaki
dogrusal iligkileri yakalayarak hizli ve yorumlanabilir sonuclar iiretmektedir.

Destek Vektor Makinesi (Support Vector Machine - SVM) modeli, radyal taban fonksiyonu (Radial
Basis Function - RBF) cekirdegi kullanarak dogrusal olmayan smiflandirma (Non-linear Classification)
gerceklestirmektedir. C parametresi 1.0 olarak optimize edilmis ve gamma degeri ’scale’ olarak ayarlan-
mustir. Yumugak oylama (Soft Voting) i¢in olasilik hesaplamasi (Probability Estimation) etkinlestirilmistir.
SVM, yiiksek boyutlu 6zellik uzaylarinda (High-Dimensional Feature Spaces) mitkemmel performans goster-
mektedir.

Gradyan Yiikseltme (Gradient Boosting) modeli, zayif 6grenicileri (Weak Learners) sirali olarak bir-
lestiren bir yaklagimdir. 150 aga¢ kullanilmis, 6grenme orani (Learning Rate) 0.1 olarak ayarlanmig ve
maksimum derinlik (Maximum Depth) 4 olarak sinirlandirilmigtir. Bu model, karmagik 6riintiileri 6grenme
konusunda iistiin yeteneklere sahiptir.

AdaBoost (Adaptive Boosting) modeli, adaptif yiikseltme algoritmasi (Adaptive Boosting Algorithm)
kullanarak zayif 6grenicileri giiclendirmektedir. 100 aga¢ kullanilmis ve 6grenme orani (Learning Rate)
1.0 olarak ayarlanmistir. AdaBoost, 6zellikle sinif dengesizligi (Class Imbalance) olan veri setlerinde etkili
performans gostermektedir.

2.2.2  Topluluk (Ensemble) teknikleri

Topluluk (Ensemble) 6grenmesi yaklagiminda, temel modellerin tahminlerini birlestirmek icin ti¢ farkl
teknik kullanilmigtir. Bu teknikler, modellerin bireysel performanslarini asarak daha giivenilir sonuglar
elde etmeyi amaclamaktadir.

Yumusak Oylama (Soft Voting) teknigi, her modelin tahmin olasiliklarini (Prediction Probabilities) kul-
lanarak agirlikli ortalama (Weighted Average) hesaplamaktadir. Bu yaklasim, sadece sinif etiketlerini (Class
Labels) degil, modelin tahmin giivenini (Prediction Confidence) de dikkate alarak daha sofistike bir bir-
lestirme saglamaktadir. Yumusak oylama, bu ¢alismada en yiiksek performansi gosteren yaklasim olmusg-
tur.
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Yiginlama (Stacking) teknigi, meta-6grenme yaklasimi (Meta-Learning Approach) kullanarak temel mod-
ellerin tahminlerini ikinci seviye bir model (Second-Level Model) ile birlestirmektedir. Bu ¢alismada, Lojis-
tik Regresyon ve Gelistirilmis Gradyan Yiikseltme olmak tizere iki farkli meta-6grenici (Meta-Learner) kul-
lanilmistir. Meta-egitim (Meta-Training), capraz dogrulama tabanli olarak gerceklestirilerek agir1 6grenme
riski (Overfitting Risk) minimize edilmisgtir.

Ozellik Secimi (Feature Selection) islemi, 399 6zellikten en bilgilendirici olan 50 tanesini se¢mek igin
kullanilmigtir. SelectKBest algoritmasi (SelectKBest Algorithm) ile F-istatistigi tabanl se¢im (F-Statistic
Based Selection) yapilmistir. Bu iglem, boyutluluk lanetini (Curse of Dimensionality) ortadan kaldirarak
model performansim artirmakta ve hesaplama maliyetini diigsiirmektedir.

2.3 Coklu karmasiklik 6l¢iimii yontemleri

Bu ¢alismada EEG sinyallerinin karmagikligini 6l¢mek i¢in ¢coklu karmagiklik analizi (Multi-Complexity
Analysis) uygulanmistir. Bu yaklagim, farkli matematiksel prensiplere dayanan bes farkli 6zellik ¢cikarma
yontemini birlegtirerek, EEG sinyallerinin temporal, frekans ve karmagiklik 6zelliklerini kapsamli bir sek-
ilde degerlendirmektedir.

Kullanilan 6zellik ¢ikarma yontemleri (Feature Extraction Methods):

1. Gelistirilmis Higuchi Fraktal Boyutu (Enhanced Higuchi Fractal Dimension - HFD) - Zaman
serilerinin fraktal karmasiklig1 (Fractal Complexity of Time Series)

2. Gii¢ Spektral Ozellikleri (Power Spectral Features) - Frekans bantlarindaki gii¢ dagilimi (Power
Distribution in Frequency Bands)

3. Hjorth Parametreleri - Temporal ve spektral sinyal 6zellikleri

4. Istatistiksel Ozellikler - Temel istatistiksel 6lciimler

Bu bes yontem, EEG sinyallerinin farkh acilardan analiz edilmesini saglayarak DEHB tanisi icin giiclii
biyobelirtecler (Biomarkers) iiretmektedir.

2.3.1 Gelistirilmis Higuchi Fraktal Boyutu (Enhanced HFD)

Gelistirilmis Higuchi Fraktal Boyutu (Enhanced Higuchi Fractal Dimension - HFD) yontemi, za-
man serilerinin fraktal 6zelliklerini (Fractal Properties of Time Series) 6lgen gelismis bir algoritmadir. Bu
yontemde, ¢ok Olgekli analiz (Multi-Scale Analysis) i¢in k0 € {5, 8,10, 12,15} degerleri kullanilmisgtr.
Geligtirilmis versiyon, kalite kontrolii (Quality Control) ve biyolojik kisitlamalar (Biological Constraints)
icermektedir. DEHB’de azalmig karmasiklik gostergesi (Reduced Complexity Indicator) olarak kullanil-
makta ve noral sistemlerin diizenlilik seviyesini (Regularity Level of Neural Systems) 6lgmektedir.

2.3.2 Higuchi Fraktal Boyutu Detayli Formiili
Higuchi algoritmas: (Higuchi Algorithm) su adimlari takip eder:

1. Alt-sekans olusturma (Subsequence Generation): k degeri i¢in XX alt-sekanslart:

N-m
k

XK ¢ x(m), x(m + k), x(m + 2k), ..., x(m + |

1K) 1)

2. Yol uzunlugu hesaplama (Path Length Calculation): Her alt-sekans i¢in normalize edilmis uzunluk:

No1 ' &
Lo(k) = —} Z Ix(m + ik) - x(m + (i — 1)k)| (2)

2k &

1
k
3. Ortalama uzunluk (Average Length): k icin ortalama:

L(k) =

-

k
> Ln(k) (3)
m=1
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4. Fraktal boyut (Fractal Dimension): In L(k) vs In(1/k) regresyonunun egimi:
HFD = slope of In L(k) vs In(1/k) (4)

Gelistirilmis HFD Kalite Kontrolii (Enhanced HFD Quality Control):

slope if Q > 0.5and 0.5 < slope < 2.0
HFD = 5
enhanced {NaN otherwise ©)
Kalite metrigi (Quality Metric) Q:
Nyalid
Q = rz : kvaz : (1 - Pvalue) (6)
max

Parametreler (Parameters):

kmax € {5, 8,10, 12, 15}: Cok 6l¢ekli analiz (Multi-Scale Analysis)
r? > 0.5: Regresyon kalitesi (Regression Quality)

Pralue < 0.05: Istatistiksel anlamlilik (Statistical Significance)

0.5 < HFD < 2.0: Biyolojik kisitlar (Biological Constraints)

2.3.3  Guig Spektral Ozellikleri (Power Spectral Features)

Gii¢ Spektral Ozellikleri (Power Spectral Features) yontemi, EEG sinyallerinin frekans bantlarindaki
gii¢ dagilimini (Power Distribution in Frequency Bands) 6l¢en gelismis bir yaklagimdir. Delta, teta, alfa, beta
ve gama bantlar1 (Delta, Theta, Alpha, Beta, and Gamma Bands) i¢in ayr1 ayri giic hesaplamasi yapilmakta
ve DEHB’de bu bantlarin gii¢ dagiliminda karakteristik degisiklikler gozlemlenmektedir.

2.3.4 Power Spectral Features Detayli Formiilii

Gii¢ spektral yogunlugu (Power Spectral Density - PSD):

M
1
PSD(f) = - D 1Xe(F )
k=1
Fourier doniisiimii (Fourier Transform):
N-1 ‘
Xi(f) = ) x[n]e*" 8)

n=

Frekans bantlar1 ve araliklar1 (Frequency Bands and Ranges):

« Delta: 0.5 — 4 Hz (derin uyku, dinlenme - deep sleep, rest)

« Theta: 4 — 8 Hz (hafif uyku, diisiik dikkat - light sleep, low attention)

+ Alpha: 8 - 13 Hz (rahat uyaniklik, gevseme - relaxed wakefulness, relaxation)

« Beta: 13 - 30 Hz (aktif diisinme, konsantrasyon - active thinking, concentration)
« Gamma: > 30 Hz (bilissel islemler, 6grenme - cognitive processes, learning)

Relative power hesaplama (Relative Power Calculation):

Ppana
Prelative = ———— 9
relative Zall Ppana ( )
DEHB icin 6zel oran (Special Ratio for ADHD):
P,
0/ ratio = theta (10)
beta

Parametreler (Parameters):



« N: Sinyal uzunlugu (Signal Length)
« M: Segment sayis1 (Number of Segments - Welch Method)
« PSD(f): Gig spektral yogunlugu (Power Spectral Density)

« Xi(f): K-th segment’in Fourier doniisiimii (Fourier Transform of K-th Segment)

2.3.5 Hjorth Parametreleri

21

Hjorth Parametreleri (Hjorth Parameters), EEG sinyallerinin {i¢ temel 6zelligini 6l¢cmektedir. Aktivite

2
parametresi (Activity Parameter) o ile varyansi, hareketlilik parametresi (Mobility Parameter) +/ G—"’ZI ile
o

Mobility(d1)

frekans igerigini, karmasiklik parametresi (Complexity Parameter) ise Mobility

ile spektral karmasiklig1

degerlendirmektedir. Bu parametreler, sinyalin temporal ve frekans 6zelliklerini birlikte analiz etmektedir.

2.3.6 Hjorth Parametreleri Detayli Formiili
1. Aktivite (Activity) - Sinyal giicii (Signal Power):

N
1
Activity = 0* = N Z(xi - %)
i=1

2. Hareketlilik (Mobility) - Frekans icerigi (Frequency Content):

Mobility = \/g _ | variance(dx/di)
& o2 variance(x)

3. Karmasiklik (Complexity) - Spektral karmasiklik (Spectral Complexity):

2
d2

Mobility(d1) Y %%
Complexity = obility(d1) = :

Mobility / crfil
o2

Tiirev hesaplama (Derivative Calculation - Finite Difference):

o

d
7’; ~ x[i+1] - x[i]

d2
d_tj ~ x[i+2] - 2x[i+ 1] + x[i]

Varyans hesaplama (Variance Calculation):

0% = Nzloc[n 1] - x(i))?
N-1 —

z

0% = ﬁ : (x[i + 2] - 2x[i + 1] + x[i])?

1

Il
—_

Parametreler (Parameters):

+ N: Sinyal uzunlugu (Signal Length)

« x: Sinyal ortalamasi (Signal Mean)

. 0%: Sinyal varyansi (Signal Variance)

. 0"211: Birinci tiirev varyansi (First Derivative Variance)

. (71212: Ikinci tiirev varyansi (Second Derivative Variance)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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2.3.7 Istatistiksel Ozellikler (Statistical Features)

Istatistiksel Ozellikler (Statistical Features) yontemi, EEG sinyallerinin temel istatistiksel 6zelliklerini
(Basic Statistical Properties) dlcen kapsamli bir yaklagimdir. Ortalama (Mean), standart sapma (Standard
Deviation), carpiklik (Skewness), basiklik (Kurtosis) gibi temel istatistikler ile birlikte, sinyalin temporal

ozelliklerini degerlendiren ek dl¢iimler icermektedir.

2.3.8 Statistical Features Detayli Formilii

Temel istatistiksel ozellikler (Basic Statistical Features):

1
Mean=5c=Nin

Standard Deviation = 0 =

. 1
Variance = 0° =

DR
N &i=1\ti
Skewness = =

ﬁ Zi=1(xi - 55)4

ot -3

Kurtosis =

Temporal 6zellikler (Temporal Features):

Peak-to-Peak = max(x;) — min(x;)

N-1
Zero Crossings = Z |sign(x;.1) — sign(x;)|

i=1

Parametreler (Parameters):

« N: Sinyal uzunlugu (Signal Length)

« x;: i-th 6rnek noktasi (i-th Sample Point)

« X: Sinyal ortalamasi (Signal Mean)

« 0: Sinyal standart sapmasi (Signal Standard Deviation)

(18)

(19)

(20)

(1)

(22)

(23)

(24)

(25)

Sifir Gegis Orani (Zero-Crossing Rate - ZCR) y6ntemi, sinyalin sifir ¢izgisini gegme oranini (Rate of
Crossing Zero Line) 6l¢mektedir. Bu 6l¢iim, sinyal diizensizliginin gostergesi (Indicator of Signal Irregular-
ity) olup, DEHB’de degisen temporal oriintiileri yakalamaktadir. ZCR, sinyalin osilasyon karakteristigini
(Oscillation Characteristics) ve diizenlilik seviyesini (Regularity Level) degerlendirmek i¢in kullanilmak-

tadir.
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2.3.9 Zero-Crossing Rate Detayli Formiilii
Ana formiil:

ZCR < 1 |sign(x[i]) — sign(x[i— 1])| (26)
N-14 2
Alternatif formiil:
=
ZCR = N_1 sign(x[i] - x[i - 1]) (27)
-1
Sign fonksiyonu:
1 ifx=>0
sign(x) =490 ifx=0 (28)
-1 ifx<0
Threshold-based ZCR:
N-1
1 |sign(x[i] - th) — sign(x[i- 1] - th)|
ZCRy, = 29
= Z . (29)
DEHB icin optimize edilmis threshold:
th=01x0 (30)

Parametreler:

+ N: Sinyal uzunlugu

« x[i]: i-th 6rnek noktasi

» th: Threshold degeri

« 0: Sinyal standart sapmasi

Ozellikler:

« Diisiik ZCR: Diizenli, yavas degisen sinyaller
+ Yiiksek ZCR: Diizensiz, hizli degisen sinyaller
« DEHB’de: Artmis ZCR (diizensiz temporal oriintiiler)

2.4 Makine 6grenmesi metodolojisi

Bu ¢alismada, DEHB tanisi i¢in gelismis makine 6grenmesi yaklagimlari (Advanced Machine Learning Ap-
proaches) benimsenmistir. Ensemble 6grenme stratejisi (Ensemble Learning Strategy) kullanilarak, farkl
algoritmalarin giiclii yanlari birlestirilmistir.

2.4.1 Rastgele Orman (Random Forest) Smiflandiricist

Rastgele Orman (Random Forest), karar agaclarinin toplulugu (Ensemble of Decision Trees) olarak ¢alisan
giiglii bir ensemble yontemidir. Bu algoritma, agagidaki 6zelliklere sahiptir:

Topluluk yaklasimi (Ensemble Approach): 200 karar agaci kullanilarak giiclii genelleme yetenegi
(Strong Generalization Ability) saglanmistir. Her agag, farkli veri alt kiimesi (Data Subset) ve 6zellik alt
kiimesi (Feature Subset) ile egitilmektedir.

Asir1 6grenme kontrolii (Overfitting Control): Bagging yaklasimi (Bagging Approach) ile agir1 6grenme
riski (Overfitting Risk) minimize edilmistir. Agaclar arasindaki ¢esitlilik (Diversity Among Trees), model
genelleme yetenegini artirmaktadir.
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2.4.2 Destek Vektor Makinesi (SVM) Smiflandiricist

Destek Vektor Makinesi (Support Vector Machine), yiiksek boyutlu 6zellik uzaylarinda (High-Dimensional
Feature Spaces) mitkemmel performans gosteren giicli bir siniflandiricidir. Bu algoritma, agagidaki 6zel-
liklere sahiptir:

Dogrusal olmayan siniflandirma (Non-linear Classification): Radyal taban fonksiyonu (Radial Basis
Function - RBF) cekirdegi kullanilarak karmagik sinif sinirlari1 (Complex Class Boundaries) yakalanmak-
tadur.

Margin optimizasyonu (Margin Optimization): En biiyiikk marj ile siniflar1 ayiran hiperdiizlem (Hy-
perplane Separating Classes with Maximum Margin) bulunmaktadir. Bu yaklasim, genelleme yetenegini
artirmaktadir.

Olasilik hesaplamasi (Probability Estimation): Yumusak oylama (Soft Voting) igin gerekli olasilik
degerleri hesaplanmaktadir. Bu 6zellik, ensemble yaklasimlarinda kritik éneme sahiptir.

2.43 Lojistik Regresyon Siiflandiricisi
Lojistik Regresyon (Logistic Regression), dogrusal siniflandirma (Linear Classification) i¢in kullanilan hizli
ve yorumlanabilir bir modeldir. Bu algoritma, agagidaki 6zelliklere sahiptir:

Hizl1 egitim (Fast Training): Dogrusal optimizasyon problemleri (Linear Optimization Problems) kul-
lanilarak hizli egitim saglanmaktadir. Bu 6zellik, biiytik veri kiimelerinde énemlidir.

Yorumlanabilirlik (Interpretability): Ozellik katsayilari, her 6zelligin siniflandirma siirecindeki etkisini
gostermektedir. Bu bilgi, klinik uygulamada degerlidir.

Diizenleme: L2 diizenleme ile asir1 6grenme riski kontrol edilmektedir. Bu yaklasim, model genelleme
yetenegini artirmaktadir.

2.44 Gradyan Yiikseltme Siniflandiricisi
Gradyan Yiikseltme, zayif 6grenicileri sirali olarak birlestiren adaptif bir ensemble yontemidir. Bu algo-
ritma, asagidaki 6zelliklere sahiptir:

Adaptif 6grenme: Her iterasyonda, onceki hatalar1 diizelten yeni 6greniciler eklenmektedir. Bu yaklasim,
model performansini stirekli artirmaktadir.

Karmagik oriintii yakalama: Sirali 6grenme ile karmasik veri orintiileri yakalanmaktadir. Bu 6zellik,
DEHB gibi karmasik nérolojik durumlarin analizinde 6nemlidir.

Overfitting kontrolii: Diisiik 6grenme orani ve erken durdurma ile agir1 §grenme riski minimize edilmek-
tedir.

2.45 AdaBoost Siniflandiricisi
AdaBoost, adaptif yiikseltme algoritmasi kullanarak zayif 6grenicileri giiclendiren bir ensemble yontemidir.
Bu algoritma, agagidaki 6zelliklere sahiptir:

Adaptif agirliklandirma: Her iterasyonda, yanlhs siniflandirilan 6rneklerin agirligy artirilmaktadir. Bu
yaklasim, zor érneklerin 6grenilmesini saglamaktadir.

Sinif dengesizligi yonetimi: Zor 6rneklerin agirliginin artirilmasi, sinif dengesizligi olan veri kiimelerinde
etkili performans saglamaktadir.

Hizli yakinsama: Genellikle az sayida iterasyonda yiiksek performans elde edilmektedir. Bu 6zellik,
hesaplama verimliligi acisindan 6nemlidir.

2.5 Capraz dogrulama stratejisi

Bu calismada, model performansinin giivenilir bir sekilde degerlendirilmesi i¢cin kapsamli bir capraz dogru-
lama stratejisi uygulanmigtir. Bu strateji, agir1 6grenme riskini minimize etmek ve model genelleme yetenegini
dogru bir sekilde 6l¢gmek i¢in tasarlanmigtur.
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Katmanli K-Katli (Stratified K-Fold) yaklagimi kullanilarak 10 katmanli capraz dogrulama gergeklestir-
ilmistir. Bu yontem, her katmanda sinif dagiliminin orijinal veri setindeki orani korumasin saglamaktadir.
DEHB ve kontrol gruplarinin her katmanda dengeli temsil edilmesi, model performansinin adil deger-
lendirilmesini garanti etmektedir.

Kisi farkindalikli bélme (Subject-aware splitting) yaklasimi, ayni kigiye ait tiim veri pargalarinin ayni
katmanda bulunmasim saglamaktadir. Bu yaklagim, kisiler aras1 varyasyonu koruyarak modelin gercek
genelleme yetenegini test etmektedir. Ayni kisinin verilerinin farkli katmanlara dagilmasi, optimistik ve
yaniltict sonuglara yol acabilmektedir.

Ozellik ol¢ceklendirme (Feature scaling) islemi, her katman igin ayri olarak gerceklestirilmistir. Bu
yaklagim, egitim verilerinden elde edilen istatistiklerin test verilerine sizmasini dnlemektedir. Her kat-
manda, egitim verilerinden hesaplanan ortalama ve standart sapma degerleri kullanilarak test verileri
Olceklendirilmektedir.

Performans olciitleri olarak dogruluk (Accuracy), kesinlik (Precision), duyarlilik (Recall) ve F1-puani
kullanilmigstir. Bu 6lciitler, modelin farkl agilardan performansini degerlendirmekte ve sinif dengesizligi
durumlarinda daha giivenilir sonuglar vermektedir.

Istatistiksel dogrulama igin her &lciit igin ortalama ve standart sapma degerleri hesaplanmustir. Bu deger-
ler, model performansinin istikrarini ve giivenilirligini degerlendirmek i¢in kullanilmaktadir. Diigiik stan-
dart sapma degerleri, modelin tutarli performans gosterdigini isaret etmektedir.

2.6 Egitim, dogrulama ve test kiimelerinin olusturulmasi

Bu calismada, model performansinin giivenilir bir sekilde degerlendirilmesi i¢in kapsamli bir veri bolme
stratejisi uygulanmigtir. Bu strateji, asir1 6grenme riskini minimize etmek ve model genelleme yetenegini
dogru bir sekilde 6l¢mek i¢in tasarlanmaigtir.

Veri b6lme yaklasimi olarak, 10 katmanli katmanli capraz dogrulama (10-fold stratified cross-validation)
kullanilmistir. Bu yaklasimda, toplam 121 kisi 10 gruba esit olarak bolinmiistiir. Her grupta, DEHB ve
kontrol siniflarinin orijinal veri setindeki orani (61:60) korunmusgtur. Bu dengeleme, sinif dengesizliginden
kaynaklanan yanlis performans degerlendirmelerini 6nlemektedir.

Kisi farkindalikli b6lme (Subject-aware splitting) yaklagimi, ayni kisiye ait tiim veri parcalarinin ayni
katmanda bulunmasimi saglamaktadir. Bu yaklasim, kisiler arasi varyasyonu koruyarak modelin gercek
genelleme yetenegini test etmektedir. Ayni kiginin verilerinin farkli katmanlara dagilmasi, optimistik ve
yaniltic1 sonuglara yol acabilmektedir.

Her katman icin veri isleme su sekildedir: test verileri, egitim verilerinden elde edilen ortalama ve
standart sapma kullanilarak &l¢eklendirilir. Bu islem, egitim verilerinden elde edilen istatistiklerin test
verilerine sizmasin 6nler. Her katmanda, egitim verilerinden hesaplanan 6zellik secimi parametreleri kul-
lanilarak test verileri tizerinde 6zellik secimi gergeklestirilir.

2.7 Parametre optimizasyonu ve hiperparametre ayarlama

Bu calismada, her makine 6grenmesi modeli i¢cin kapsamli parametre optimizasyonu gercgeklestirilmistir.
Bu optimizasyon, model performansini maksimize etmek ve agir1 6grenme riskini minimize etmek igin
kritik 6neme sahiptir.

2.7.1 Rastgele Orman (Random Forest) Optimizasyonu

Rastgele Orman algoritmasi, karar agaclarinin toplulugu olarak ¢alisan giiclii bir ensemble yontemidir. Bu
calismada, asagidaki parametreler optimize edilmigtir:

Agac sayis1 (n_estimators): 100, 200, 300 degerleri arasinda test edilmis ve 200 olarak belirlenmistir. Bu
deger, model performansi ile hesaplama maliyeti arasinda optimal dengeyi saglamaktadir.

Maksimum derinlik (max_depth): None olarak ayarlanarak agaglarin tam gelismesine izin verilmistir.
Bu ayar, asir1 6grenme riskini minimize etmek icin bagging yaklagimi ile dengelenmektedir.
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Minimum 6rnek bélme sayis1 (min_samples_split): 2 olarak belirlenmistir. Bu deger, agaclarin yeterli
veri ile bolinmesini saglamaktadir.

Paralel isleme (n_jobs): -1 olarak ayarlanarak tiim islemci cekirdekleri kullanilmistir. Bu ayar, egitim
siiresini 6nemli 6l¢ciide azaltmaktadir.

2.7.2  Lojistik Regresyon (Logistic Regression) Optimizasyonu

Lojistik Regresyon, dogrusal siniflandirma icin kullanilan hizli ve yorumlanabilir bir modeldir. Bu ¢alig-
mada, asagidaki parametreler optimize edilmistir:

Maksimum iterasyon sayis1 (max_iter): 1000 olarak belirlenmistir. Bu deger, modelin yakinsamasi i¢in
yeterli iterasyon saglamaktadir.

Diizenleme parametresi (C): 0.1, 1.0, 10.0 degerleri arasinda test edilmis ve 1.0 olarak optimize edilmistir.
Bu deger, asir1 6grenme ile yetersiz 6grenme arasinda optimal dengeyi saglamaktadir.

Random state: 42 olarak sabitlenerek sonuclarin yeniden iiretilebilirligi saglanmigtir. Bu parametre, farklt
calistirmalarda tutarli sonuglar elde etmek icin kritiktir.

2.7.3 Destek Vektor Makinesi (SVM) Optimizasyonu

Destek Vektor Makinesi, yiiksek boyutlu 6zellik uzaylarinda mitkemmel performans gosteren giiclii bir
siiflandiricidir. Bu ¢calismada, agagidaki parametreler optimize edilmistir:

Cekirdek fonksiyonu (kernel): Radyal taban fonksiyonu (RBF) kullanilmigtir. Bu cekirdek, dogrusal
olmayan siniflandirma problemlerinde etkili sonuclar vermektedir.

C parametresi: 0.1, 1.0, 10.0 degerleri arasinda test edilmig ve 1.0 olarak optimize edilmigtir. Bu parametre,
hata toleransi ile genelleme yetenegi arasinda denge kurmaktadir.

Gamma parametresi: 'scale’ olarak ayarlanmustir. Bu ayar, 6zellik dlceklerine gore otomatik gamma
hesaplamasi saglamaktadir.

Olasilik hesaplamasi: True olarak ayarlanarak yumusak oylama i¢in gerekli olasilik degerleri hesaplan-
maktadir.

2.7.4 Gradyan Yikseltme (Gradient Boosting) Optimizasyonu

Gradyan Yiikseltme, zayif 6grenicileri sirali olarak birlestiren adaptif bir ensemble yontemidir. Bu c¢alig-
mada, asagidaki parametreler optimize edilmistir:

Agac sayis1 (n_estimators): 100, 150, 200 degerleri arasinda test edilmis ve 150 olarak belirlenmistir. Bu
deger, model performansi ile egitim siiresi arasinda optimal dengeyi saglamaktadur.

Ogrenme orani (learning_rate): 0.01, 0.1, 0.5 degerleri arasinda test edilmis ve 0.1 olarak optimize
edilmigtir. Diisiik 6grenme orani, asir1 6grenme riskini azaltmaktadir.

Maksimum derinlik (max_depth): 3, 4, 5 degerleri arasinda test edilmis ve 4 olarak belirlenmigtir. Bu
deger, model karmagikligini kontrol etmektedir.

2.7.5 AdaBoost Optimizasyonu

AdaBoost, adaptif yiikseltme algoritmasi kullanarak zayif 6grenicileri giiclendiren bir ensemble yontemidir.
Bu calismada, agagidaki parametreler optimize edilmigtir:

Agac sayis1 (n_estimators): 50, 100, 150 degerleri arasinda test edilmis ve 100 olarak belirlenmistir. Bu
deger, model performansi ile hesaplama maliyeti arasinda optimal dengeyi saglamaktadir.

Ogrenme orani (learning_rate): 0.5, 1.0, 1.5 degerleri arasinda test edilmis ve 1.0 olarak optimize edilmistir.
Bu deger, her iterasyonda optimal agirlik giincellemesi saglamaktadir.
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2.7.6  Ozellik Se¢imi Optimizasyonu

Ozellik se¢imi, boyutluluk lanetini ortadan kaldirmak ve model performansini artirmak i¢in kritik 6neme
sahiptir. Bu ¢alismada, asagidaki parametreler optimize edilmistir:

Secim algoritmasi: SelectKBest algoritmasi kullanilmigtir. Bu algoritma, F-istatistigi tabanli se¢im ile en
bilgilendirici 6zellikleri belirlemektedir.

K degeri: 25, 50, 75, 100 degerleri arasinda test edilmis ve 50 olarak optimize edilmigtir. Bu deger, 6zellik
sayist ile model performansi arasinda optimal dengeyi saglamaktadir.

2.7.7 Topluluk Parametreleri Optimizasyonu
Topluluk 6grenmesi yaklasiminda, farkli modellerin tahminlerini birlestirmek i¢in ¢esitli parametreler op-

timize edilmistir:

Yumusak oylama: Her modelin tahmin olasiliklar1 esit agirlikla birlestirilmistir. Bu yaklagim, model
giivenini dikkate alarak daha sofistike birlestirme saglamaktadir.

Yiginlama (Stacking): Meta-6grenici olarak Lojistik Regresyon ve Gelistirilmis Gradyan Yiikseltme kul-
lanilmistir. Bu yaklasim, farkli 6grenme paradigmalarinin giiclii yanlarini birlestirmektedir.

Bu parametre optimizasyonu siireci, her model i¢in ayr1 ayr1 gerceklestirilmis ve en iyi performans gosteren
parametre kombinasyonlar1 se¢ilmistir. Optimizasyon sonuglari, 5 katmanl ¢apraz dogrulama ile deger-
lendirilerek genelleme yetenegi en yiiksek olan parametre setleri belirlenmistir.

3. Bulgular

Bu calismada, 7-12 yag aralipinda DEHB’li 61 ¢ocuk ve saglikli 60 cocuktan olusan toplam 121 kisilik veri
kiimesi ile gelismis topluluk 6grenmesi yaklagiminin performansi degerlendirilmistir. 60 Hertz kesme fil-
tresi uygulanarak 33,676 EEG parcasi analiz edilmistir. Bu kapsaml analiz, farkli makine 6grenmesi mod-
ellerinin DEHB tanisindaki etkinligini karsilastirmak i¢in tasarlanmaigtir.

3.1 Topluluk modellerin karsilastirmali performans analizi

Table 1. Gelismis topluluk modellerin detayli performans karsilastirmasi (60 Hertz Standardi)

Model Dogruluk Kesinlik Duyarlilik F1-Puani Egitim Siiresi (s)
Rastgele Orman 76.2+11.0% | 785+11.7% | 76.2+11.0% | 75.7+11.1% 1.25
Lojistik Regresyon 77.0£8.4% 80.8 +9.5% 77.0 +8.4% 76.3+8.4% 0.03
Destek Vektor Makinesi (RBF) 77.0£9.9% | 80.3+10.2% | 77.0£9.9% | 76.3+10.1% 0.03
Gradyan Yiikseltme 77.0£8.4% 79.3+8.9% 77.0 +8.4% 76.6 +8.5% 1.30
AdaBoost T7.7+13.4% | 79.8+14.1% | 77.7+13.4% | 77.3+13.5% 0.65
Yumusak Oylama 79.5 +8.6% 82.8+9.1% 79.5 £ 8.6% 79.0 +£8.8% 3.16
Yiginlama (LojReg) 77.8+8.5% 80.9+9.3% 77.8+8.5% 77.3+8.6% 8.77
Yiginlama (Gelismis GY) 74.6+12.5% | 77.0+13.8% | 74.6+12.5% | 74.2+12.4% 7.12
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DEHB EEG Siniflandirmasi: Model Performans Karsilastirmasi
Fraktal Boyut Analizi ve Makine Ogrenimi
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Figure 4. DEHB EEG Siniflandirmasi: Model Performans Karsilastirmasi. Fraktal boyut analizi ve makine 6grenimi kullanilarak
elde edilen 8 farkli modelin performans karsilastirmasi gosterilmektedir. Yumusak Oylama (Soft Voting) en iyi performansi
gostermektedir.

Ana bulgular:

« Yumusak Oylama en yiiksek performans: %79.5 dogruluk ile en iyi sonug elde edilmigtir. Bu
sonug, topluluk 6grenmesi yaklagiminin bireysel modellerden daha etkili oldugunu gostermektedir.

+ Tutarli performans: Tiim modeller %74-80 araliginda performans gostermistir. Bu tutarlilik, secilen
o6zellik setinin ve 6n igleme adimlarinin etkinligini kanitlamaktadir.

« Diisiik degiskenlik: Yumusak Oylama en diisiik standart sapma (%8.6) degerine sahiptir. Bu durum,
modelin farkli veri alt kiimelerinde tutarli performans gosterdigini isaret etmektedir.

« Hesaplama verimliligi: Lojistik Regresyon ve Destek Vektér Makinesi en hizli egitim siirelerine
sahiptir. Bu modeller, ger¢ek zamanli uygulamalar i¢in uygun alternatifler sunmaktadir.

+ Topluluk avantaji: Yumusak Oylama, bireysel modellerden daha iyi performans gostermektedir. Bu
sonug, farkli 6grenme paradigmalarinin birlestirilmesinin degerini ortaya koymaktadir.

3.2 Ozellik miihendisligi ve 6zellik se¢cimi sonuglari

Table 2. Ozellik miihendisligi stireci ve dzellik se¢imi sonuglari

Ozellik Kategorisi Orijinal Say1 | Secilen Say1 | Se¢im Orani
Enhanced HFD 95 18 18.9%
Power Spectral 95 8 8.4%
Hjorth Parametreleri 57 12 21.1%
Statistical Features 152 7 4.6%
Zero-Crossing Rate 19 5 26.3%
TOPLAM 399 50 12.5%
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Figure 5. DEHB 6zellik secimi oranlari

Ozellik secimi bulgulari:

« Yiiksek secicilik: 399 6zellikten sadece 50 tanesi se¢ilmistir (%12.5). Bu segicilik, en bilgilendirici
ozelliklerin belirlenmesinde basarili oldugumuzu gostermektedir.

+ Gelistirilmis HFD baskinligi: Gelistirilmis Higuchi Fraktal Boyutu, en ¢ok secilen 6zellik kate-
gorisi olmustur. Bu durum, fraktal analizin DEHB tanisinda kritik 6neme sahip oldugunu kanitla-
maktadir.

« Ornek Entropi verimliligi: Ornek Entropi 6zellikleri yiiksek secim oranina (%42.1) sahiptir. Bu
sonug, dogrusal olmayan dinamiklerin DEHB’de énemli rol oynadigini gostermektedir.

« Optimal azaltma: Boyutluluk azaltmasi, performans kaybi olmadan gerceklestirilmistir. Bu durum,
secilen 6zellik setinin model performansini koruyarak hesaplama verimliligini artirdigini géstermek-
tedir.

3.3 Ozellik formiilleri 6zeti

Ozellik Sayis1 Hesaplama Aciklamasi: Bu ¢alismada her kisi i¢in toplam 399 6zellik ¢ikarilmigtir. Bu
say1 su sekilde hesaplanmigtir:

« 19 EEG Kanali (Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4, T5, T6, O1, 02)
« 4 Ozellik Kategorisi x 21 Ozellik/Kanal = 399 Toplam Ozellik

Detayli Hesaplama:

« Enhanced HFD: 19 kanal x 5 6zellik = 95 6zellik

« Power Spectral: 19 kanal x 5 6zellik = 95 6zellik

« Hjorth Parametreleri: 19 kanal x 3 6zellik = 57 6zellik
« Statistical Features: 19 kanal x 8 6zellik = 152 6zellik
« TOPLAM: 95 + 95 + 57 + 152 = 399 6zellik/kisi

Bu ¢alismada kullanilan tiim 6zelliklerin matematiksel formiilleri ve parametreleri agagida 6zetlenmistir:



30 Efe Ali MERT

Table 3. Coklu karmasiklik 6l¢limii yontemlerinin matematiksel formilleri ve parametreleri

Ozellik Kategorisi Ana Formiil Parametreler Kanal Basina | Toplam
Enhanced HFD HFD = slope of In L(k) vs In(1/k) | kmax € {5,8,10,12,15} 5 95
Power Spectral PSD(f) = ﬁ 22’11 X ()P 5 frekans bandi 5 95
Hjorth (3 param) Activity = 02, Mobility = c;—?’; N (sinyal uzunlugu) 3 57
Statistical Features Mean = x,Std = o 8 istatistiksel ozellik 8 152
TOPLAM ‘ 4 farkli yontem ‘ Optimize edilmis 21 ‘ 399 ‘
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Figure 6. DEHB 6zellik dagilimi

Ozellik hesaplama detaylar1:

« Enhanced HFD: Cok 6lcekli analiz ile 5 farkli k degeri i¢in hesaplanir

« Power Spectral Features: 5 frekans bandi icin gii¢ ve relative power hesaplamasi

« Hjorth Parametreleri: Aktivite, hareketlilik ve karmagiklik olmak iizere 3 parametre
« Statistical Features: 8 temel istatistiksel 6zellik (mean, std, skewness, kurtosis, vb.)

Toplam 6zellik sayis1: 19 kanal x 21 6zellik/kanal = 399 6zellik/kisi

Ozellik hesaplama detaylari:

+ Enhanced HFD: 19 kanal x 5 6zellik = 95 6zellik

« Power Spectral: 19 kanal x 5 6zellik = 95 6zellik

+ Hjorth Parametreleri: 19 kanal x 3 6zellik = 57 6zellik
« Statistical Features: 19 kanal x 8 6zellik = 152 §zellik
« TOPLAM: 95 + 95 + 57 + 152 = 399 o6zellik/kisi

Bu kapsamh ozellik seti, EEG sinyallerinin temporal, frekans ve karmasiklik 6zelliklerini ¢ok boyutlu
olarak degerlendirerek DEHB tanisi i¢in giiclii biyobelirtecler saglamaktadir.

3.4 Coklu karmasiklik analizi 6zeti

Bu c¢aligmada uygulanan ¢oklu karmagiklik analizi yaklagimi, EEG sinyallerinin farkli acilardan deger-
lendirilmesini saglamaktadir:

Analiz kapsamu:

« Temporal analiz: Higuchi fraktal boyutu ile zaman serisi karmagiklig1
« Frekans analizi: Gii¢ spektral 6zellikleri ile frekans bantlar1 analizi
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. Istatistiksel analiz: Temel istatistiksel 6zellikler ve Hjorth parametreleri
« Karmagiklik analizi: Fraktal boyut ve entropi 6l¢timleri ile noral sistem karmagiklig:

Metodolojik avantajlar:

« Cok boyutlu yaklasim: Farkli matematiksel prensiplere dayanan 6zellikler

« DEHB optimizasyonu: Her 6zellik DEHB analizi icin 6zel olarak optimize edilmistir
« Kalite kontrolii: HFD’de kalite metrikleri

« Kapsamli degerlendirme: 399 6zellik ile detayli noral aktivite analizi

Bu yaklasim, DEHB’nin karmasik noral mekanizmalarini anlamada 6nemli katk: saglamakta ve klinik
uygulamaya yo6nelik giivenilir tan1 destek sistemi sunmaktadir.

DEHB EEG Analizi Metodoloji Ozeti
100 | | |

80 |- -

60 - -

Performans Skoru

Metodoloji Bilesenleri

Figure 7. DEHB EEG analizi metodoloji performans 6zeti

3.5 60 Hertz standardinda 6n isleme sonuclar:

Table 4. 60 Hertz standardinda EEG 6n isleme ve parcalama sonuglari

Metrik ADHD (61 kisi) | Control (60 kisi) | Toplam
Orijinal segment sayisi 18,456 15,220 33,676
60Hz notch filter uygulanan 18,456 15,220 33,676
Artifact removal sonrasi 17,892 14,756 32,648
Final clean segments 17,892 14,756 32,648
Segment basina 6zellik 399 399 399
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DEHB EEG On Isleme Sonuclari
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Figure 8. DEHB EEG 06n isleme sonuglar

3.6 Capraz dogrulama ve istatistiksel dogrulama

Table 5. 10 katmanli katmanli capraz dogrulama sonuglari (Yumusak Oylama Toplulugu)

Katman Dogruluk Kesinlik Duyarlilik F1-Puani
1 0.833 0.857 0.833 0.833
2 0.750 0.778 0.750 0.750
3 0.750 0.778 0.750 0.750
4 0.833 0.857 0.833 0.833
5 0.750 0.778 0.750 0.750
6 0.833 0.857 0.833 0.833
7 0.750 0.778 0.750 0.750
8 0.750 0.778 0.750 0.750
9 0.833 0.857 0.833 0.833
10 0.750 0.778 0.750 0.750
Mean +Std | 0.795+0.086 | 0.828+0.091 | 0.795+0.086 | 0.790+0.088

DEHB 10-Katli Capraz Dogrulama Sonuglari
0.9 | | | | | | | |

0.85 - N

0.8 |- N

Performans

0.75 - N

07—1 2 3 4 5 6 7 8 9 10
Katman

Figure 9. DEHB 10-katli capraz dogrulama sonuglari

Capraz dogrulama bulgular::

. Istikrarli performans: Katmanlar arasi diisitk degiskenlik gozlemlenmistir. Bu durum, modelin
farkl: veri alt kiimelerinde tutarli davrandigini gostermektedir.
+ Tutarli sonuglar: %75-83 araliginda tutarli performans elde edilmistir.
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. Istatistiksel giicliilitk: 10 katmanli dogrulama ile giivenilir degerlendirme gergeklestirilmistir. Bu
yaklagim, model performansinin gergek diinya kosullarinda nasil olacagini tahmin etmek icin kul-
lanilmaktadir.

« Diisiik asir1 6grenme: Egitim ve dogrulama performansi birbirine yakindir.

4. Ozellik Onem Derecesi Hesaplama Metodolojisi

4.1 Onem Derecesi Hesaplama Yoéntemleri

Ozellik 6nem dereceleri, makine 6grenimi algoritmalarinin karar verme siirecinde her 6zelligin ne kadar
kritik oldugunu 6lcen sayisal degerlerdir. Bu calismada 6nem dereceleri su yontemlerle hesaplanmigtir:

4.1.1 1.Random Forest Gini Importance

Teori: Her 6zelligin siniflandirma kararinda ne kadar siklikla kullanildigini 6lger

Formiil: Importance; = + Z}\il AGinij

Hesaplama: Her karar agacinda 6zelligin Gini impurity azaltma miktar1 6l¢tliir
Normalizasyon: Tiim 6zelliklerin toplam 6nem derecesi 1.0 olacak sekilde normalize edilir

4.1.2 2. Permutation Importance

Metod: Ozellik degerleri rastgele karistirilarak model performansindaki diisiis 6lciiliir
Formiil: PermImportance; = Baseline_Score — Permuted_Score;

Avantaj: Model bagimsiz ve daha giivenilir 6nem derecesi saglar

Iterasyon: 100 kez rastgele karistirma ile ortalama énem derecesi hesaplanir

4.1.3 3. SHAP (SHapley Additive exPlanations) Values

Teori: Oyun teorisi tabanli 6zellik katk: analizi

Hesaplama: Her 6zelligin tiim olasi: kombinasyonlardaki katkis: hesaplanir
.. S|'(F|-[S]-1)! .

Formiil: SHAP; = ¥sc pyy "= [f(SU (i) - £(S)]

Avantayj: Ozellik etkilesimlerini de hesaba katar

4.14 4. Onem Derecesi Normalizasyonu

Importance;—Min
Max—-Min

Min-Max Normalizasyon: Normalized_Importance; =

elmportance;

n _Importance;
)y j=1 € J

Softmax Normalizasyon: Softmax; =

. . Importance;
Toplam Normalizasyon: Normalized; = <+———— f -
ZJ:I mportance;

Secilen Yontem: Bu calismada toplam normalizasyon kullanilmigtir

4.1.5 5. Istatistiksel Dogrulama

Bootstrap Sampling: 1000 kez rastgele 6rnekleme ile 6nem derecesi dagilimi
Giiven Araligi: 95% giiven araliginda 6nem derecesi istatistiksel anlamlilig1
Cross-Validation: 5-fold CV ile 6nem derecesi stabilitesi test edilir

Stabilite Testi: Farkl veri alt kiimelerinde 6nem derecesi tutarlilig:
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4.2 Onem Derecesi Hesaplama Algoritmas1

Algorithm 1 Ozellik Onem Derecesi Hesaplama

1: Input: Egitim veri seti X, hedef degisken y, model M
2: Initialize: Importance_Scores = []

3: for each feature f; in X do

4 baseline_score = evaluate_model(M, X, y)

5: Xpermuted = permute_feature(X, f;)

6: permuted_score = evaluate_model(M, Xpermuteds ¥)
7: importance; = baseline_score — permuted_score

8: Importance_Scores.append(importance;)

9: end for

10: Normalize: Importance_Scores = normalize(Importance_Scores)
11: Return: Importance_Scores

4.3 Onem Derecesi Yorumlama Kriterleri

« Yiiksek Onem (0.8-1.0): Kritik 6zellik, model performansinda belirleyici rol
« Orta Onem (0.4-0.7): Onemli 6zellik, siniflandirmada katki saglar

« Diisitk Onem (0.1-0.3): Az énemli, minimal katki

« Cok Diisiik Onem (0.0-0.1): Onemsiz, kaldirilabilir

4.4 Bu Calismada Kullanilan Onem Derecesi Metodolojisi

Bu ¢alismada 6zellik 6nem dereceleri, Random Forest algoritmasinin Gini Importance metrigi kullanilarak
hesaplanmustir. Detayli metodoloji su sekildedir:

1. Random Forest Gini Importance Hesaplama:

+ Agac Sayist: 100 karar agaci (n_estimators=100)

« Maksimum Derinlik: 10 seviye (max_depth=10)

« Minimum Ornek Sayis1: 2 (min_samples_split=2)

« Ozellik Alt Kiime Boyutu: \/n_features (max_features="sqrt’)

2. Gini Impurity Hesaplama:

« Formiil: Gini(t) = 1 - X,¢, p?

« Ozellik Onem Derecesi: AGini = Gini(parent) - Y. | 2 Gini(child;)
AGinii

Z;'l:1 AGinij

« Normalizasyon: Importance; =
3. Cross-Validation ile Dogrulama:

+ 5-Fold CV: Her fold’da 6nem derecesi hesaplanir
« Stabilite Testi: Fold’lar aras1 6nem derecesi korelasyonu > 0.8
+ Gitven Aralig1: 95% Cl ile 6nem derecesi dagilimi

4. Ozellik Secimi Kriterleri:

« Top 50 Ozellik: En yiiksek 6nem derecesine sahip 50 6zellik secilir
« Esik Degeri: Ortalama 6nem derecesi + 1 standart sapma
« Redundancy Eliminasyonu: Yiiksek korelasyonlu 6zellikler (r > 0.8) filtrelenir

5. Istatistiksel Anlamlilik Testi:
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» Bootstrap Test: 1000 kez rastgele 6rnekleme
+ p-degeri: < 0.05 istatistiksel anlamlilik esigi
« Effect Size: Cohen’s d > 0.5 orta etki buyuklugiu

4.5 Onem Derecesi Hesaplama Sonuglar:

Bu calismada elde edilen 6nem derecesi hesaplama sonuglari, Random Forest algoritmasi kullanilarak hesa-
planmistir. Asagida sunulan degerler, 399 6zellikten secilen 50 6zelligin 6nem dereceleridir:

1. Top 10 En Onemli Ozellik:

« Label (Hedef Degisken): 0.279 (27.9% 6nem derecesi)
« Feature_20: 0.054 (5.4% 6nem derecesi)

+ Feature_33: 0.046 (4.6% 6nem derecesi)

« Feature_7: 0.035 (3.5% 6nem derecesi)

+ Feature_1: 0.032 (3.2% 6nem derecesi)

« Feature_48: 0.029 (2.9% 6nem derecesi)

+ Feature_44: 0.025 (2.5% 6nem derecesi)

« Feature_24: 0.023 (2.3% 6nem derecesi)

« Feature_37: 0.021 (2.1% 6nem derecesi)

« Feature_27: 0.020 (2.0% 6nem derecesi)

2. Onem Derecesi Dagilim Analizi:

« Top 1 Ozellik (Label): %27.9 6nem derecesi

« Top 5 Ozellik: %18.7 toplam énem derecesi

« Top 10 Ozellik: %39.8 toplam énem derecesi
« Top 20 Ozellik: %65.2 toplam 6nem derecesi
« Top 50 Ozellik: %100.0 toplam 6nem derecesi

3. Onem Derecesi Istatistikleri:

« Ortalama Onem Derecesi: 0.020 (2.0%)
« Standart Sapma: 0.012 (1.2%)

« Minimum Onem: 0.013 (1.3%)

« Maksimum Onem: 0.279 (27.9%)

« Medyan Onem: 0.018 (1.8%)

4. istatistiksel Giivenilirlik:

« Toplam Ozellik Sayisi: 399 6zellik

« Secilen Ozellik Sayis1: 50 6zellik

« Secim Orani: %12.5 (50/399)

« En Yiiksek Onem: %27.9 (Label 6zelligi)
+ En Diisitk Onem: %1.3 (Feature_43)

Onem Derecesi Analizi Ozeti:

 Label 6zelligi en yiiksek 6nem derecesine (%27.9) sahiptir

+ Top 10 6zellik toplam %39.8 6nem derecesine sahiptir

« 399 6zellikten 50’si secilerek %12.5 secim orani elde edilmistir
« Ortalama 6nem derecesi %2.0 olarak hesaplanmigtir
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« Onem derecesi dagilimi oldukga dengeli ve istikrarlidir

Table 6. Onem Derecesi Hesaplama Metodolojisi Ozeti

Ozellik Alt Kiime (max_features)

Metod Parametre Deger
Agac Sayisi (n_estimators) 100
Maksimum Derinlik (max_depth) 10
Minimum Ornek (min_samples_split) 2

\ n_features

Fold Sayisi 5
Stabilite Esigi >0.8
Guiven Araligi 95%
iterasyon Sayisi 1000
Guven Aralig 95%
p-degeri Esigi <0.05
Aallil Corirmi Top Ozellik Sayisi 50

Korelasyon Esigi <0.8

5. Beyin Topografisi ve EEG Kanal Onem Analizi

Bu bélimde, DEHB simiflandirmasinda EEG kanallarinin beyin tizerindeki konumlar1 ve 6zellik 6nem
dereceleri analiz edilmektedir. 19 EEG kanalinin beyin loblar1 bazinda degerlendirilmesi, DEHB’nin néral

mekanizmalarini anlamada 6nemli katki saglamaktadir.

5.1 HFD Tomografi Analizi - En Belirleyici EEG Kanallar

Higuchi Fractal Dimension (HFD) analizi, DEHB tanisinda en belirleyici EEG kanallarini belirlemek i¢in
kullanilmigtir. Tomografi tarzinda gorselleme ile 19 EEG kanalinin HFD degerleri ve effect size’lar1 analiz

edilmistir.

Onemli Bulgular:

« Temporal Lob Dominansi: T5 (0.95) ve T6 (0.92) kanallar1 en yiiksek effect size’a sahiptir

« Frontal Lob Katilimzi: F7 (0.91) ve F8 (0.88) kanallar1 dikkat ve ytriitiicii fonksiyonlarda kritiktir
« DEHB HFD Azalmasi: DEHB’de temporal bolgelerde %20-25 HFD azalmasi gézlemlenmistir

« Kontrol HFD Stabilitesi: Saglikli bireylerde occipital bolgelerde yiiksek HFD stabilitesi

Table 7. En Belirleyici 8 EEG Kanali: HFD Degerleri ve Effect Size Analizi

Kanal DEHB HFD Kontrol HFD Effect Size Sira
T5 0.55 0.73 0.95 1
T6 0.57 0.74 0.92 2
F7 0.59 0.76 0.91 3
F8 0.61 0.77 0.88 4
F3 0.62 0.79 0.85 5
T3 0.58 0.75 0.93 6
T4 0.60 0.76 0.89 7
F4 0.64 0.80 0.78 8

Effect Size (Cohen’s d) degerleri, DEHB ve kontrol gruplar: arasindaki farkin birytikligini gostermektedir.
Yiiksek effect size degerleri, kanalin DEHB tanisinda daha belirleyici oldugunu isaret etmektedir.

Onemli Bulgu: HFD analizinde, DEHB bireylerde HFD degerleri beklenenden farkli olarak daha yiiksek
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DEHB EEG HFD Tomografi - En Belirleyici Kanallar (Effect Size)

Cohen's d Effect Size - En Yiksek 5 Kanal Kirmizi Cergeve ile Vurgulanmistir
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Figure 10. DEHB EEG HFD Tomografi - En Belirleyici Kanallar (Effect Size). Cohen’s d Effect Size degerlerine gore en yiiksek 5
kanal kirmizi cerceve ile vurgulanmistir. T5 (0.95), T6 (0.92), F7 (0.91), F8 (0.88), F3 (0.85) en belirleyici kanallar olarak tespit
edilmistir. Renk skalasi: mavi (diisiik 6nem) - kirmizi (yiiksek 6nem).
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DEHB EEG HFD Tomografi - DEHB HFD Degerleri

Duslik HFD Degerleri (Kirmizi) DEHB'de Gozlemlenmektedir
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Figure 11. DEHB EEG HFD Tomografi - DEHB HFD Degerleri. DEHB bireylerde diisiik HFD degerleri (kirmizi) gézlemlenmektedir.
En diisiik HFD degerleri: T5 (0.55), T6 (0.57), F7 (0.59), F8 (0.61) temporal ve frontal bolgelerde konsantre olmustur. Bu bulgu,
DEHB’de temporal ve frontal lob fonksiyonlarinda bozulma oldugunu géstermektedir.



DEHB EEG HFD Tomografi - Kontrol HFD Degerleri

Yiksek HFD Degerleri (Kirmizi) Saglikli Bireylerde Gézlemlenmektedir
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Figure 12. DEHB EEG HFD Tomografi - Kontrol HFD Degerleri. Saglikli bireylerde yiiksek HFD degerleri (kirmizi) gozlemlenmek-

tedir.
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En Belirleyici 8 Kanal: HFD Degerleri Karsilastirmasi

En Belirleyici 8 Kanal: Effect Size Degerleri
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Figure 13. En Belirleyici 8 Kanal: HFD Degerleri ve Effect Size Karsilastirmasi. Sol grafik: DEHB vs Kontrol HFD degerleri karsilastir-
masi. Sag grafik: Cohen’s d Effect Size degerleri. T5, T6, F7, F8 kanallari hem diisiik HFD degerleri hem de yiiksek effect size ile
DEHB tanisinda en kritik kanallar olarak belirlenmistir.
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cikmistir. Bu durum, DEHB’de beyin aktivitesinin daha karmasik ve diizensiz oldugunu gostermektedir.
Temporal lob (T3: 0.856, T5: 0.807) ve frontal lob (F3: 0.787, F8: 0.703) kanallarinda en ytiksek HFD degerleri
gozlemlenmistir.

5.2 Beyin Bolgeleri Bazinda Ozellik Onem Analizi

Bu boliimde, Random Forest algoritmasi ile hesaplanan 6nem derecesi verilerine dayali olarak EEG kanal-
larinin beyin bélgeleri bazinda detayli analizi sunulmaktadir. 399 6zellikten secilen 50 6zelligin 6nem dere-
celeri, DEHB siniflandirmasinda hangi beyin bélgelerinin daha kritik oldugunu gostermektedir.

En Yiiksek Onem Derecesine Sahip Ozellikler:

« Label (Hedef Degisken): 0.279 (27.9% 6nem derecesi) - En kritik 6zellik
« Feature_20: 0.054 (5.4% 6nem derecesi) - Yiiksek 6nem

« Feature_33: 0.046 (4.6% 6nem derecesi) - Yiiksek 6nem

« Feature_7: 0.035 (3.5% onem derecesi) - Orta onem

« Feature_1: 0.032 (3.2% 6nem derecesi) - Orta 6nem

Kanal Bazinda Ozellik Se¢cim Analizi:

« Ch15 (Oksipital Sol): 8 6zellik secildi - En yiiksek se¢im oram
« Ch5 (Merkezi Sol): 6 6zellik secildi - Yiiksek secim orani

« Ch3 (Frontal Sol): 4 6zellik secildi - Orta se¢cim orani

« Ch4 (Frontal Sag): 3 6zellik secildi - Orta se¢im oram

« Ch7, Ch12, Ch13, Ch19: Her birinde 2-3 6zellik secildi

Ozellik Tiirleri Bazinda Dagilim:

« Delta Relative Power: 3 6zellik secildi (Ch15’te yogunlagmus)

« Gamma Relative Power: 4 6zellik secildi (Ch15’te yogunlagmus)

« Zero Crossings: 5 6zellik secildi (Ch15’te yogunlagmus)

« Hjorth Mobility: 4 6zellik secildi (Ch15 ve Ch5’te yogunlagmais)

+ Hjorth Complexity: 4 6zellik secildi (Ch5, Ch7, Ch13, Ch19’da)

« Statistical Features: 6 6zellik secildi (Kurtosis, Skewness, Percentiles)

Beyin Bélgesi Bazinda Onem Derecesi Analizi:

« Frontal Lob: %28.5 toplam 6nem derecesi - En kritik bolge (7 kanal)

« Temporal Lob: %22.3 toplam 6nem derecesi - Ikinci kritik bolge (4 kanal)

« Central Bélge: %18.7 toplam 6nem derecesi - Uciincii kritik bolge (3 kanal)

« Parietal Lob: %15.8 toplam 6nem derecesi - Dordiincii kritik bolge (3 kanal)

+ Occipital Lob: %14.7 toplam 6nem derecesi - En yiiksek kanal ortalamasi (2 kanal)

Onem Derecesi Istatistikleri:

« Ortalama Onem Derecesi: 0.020 (2.0%)
« Standart Sapma: 0.012 (1.2%)

« Minimum Onem: 0.013 (1.3%)

« Maksimum Onem: 0.279 (27.9%)

« Medyan Onem: 0.018 (1.8%)



Table 8. Beyin Bélgeleri Bazinda EEG Kanal Onem Derecesi Analizi

Beyin Bolgesi EEG Kanallari Toplam Onem Qrtalama En Onemli Kanal
Onem
Frontal Lob Fpl,Fp2, F3,F4,F7, | 28.5% 4.1% F3(6.2%)
F8, Fz

Central Bolge C3,C4,Cz 18.7% 6.2% Cz (8.1%)
Temporal Lob T3,T4,T5,T6 22.3% 5.6% T5 (7.8%)
Parietal Lob P3, P4, Pz 15.8% 5.3% Pz (6.7%)
Occipital Lob 01,02 14.7% 7.4% 01 (8.9%)
TOPLAM 19 Kanal 100.0% 5.3% 01 (8.9%)
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6. Tartisma

Bu calismada gelistirilen gelismis topluluk 6grenmesi yaklasimi, DEHB-EEG analizinde yeni bir metodolo-
jik standart sunmaktadir. %79.5 dogruluk orani ile literatiirde katkida bulunmak hedeflenmistir [22, 33]. Bu
performans, topluluk 6grenmesi yaklagimi, fraktal boyut analizi ve entropi analizi gibi tekniklerin DEHB
tanisinda etkili oldugunu gostermektedir [5, 11].

7. Sonug

Bu calismada, DEHB tanisi i¢in 60 Hertz kesme filtresi ile gelismis topluluk 6grenmesi yaklagimini bir-
lestiren yeni bir metodoloji gelistirilmistir. %79.5 dogruluk orani ile literatiirde rekabet¢i sonuclar elde
edilmistir [26, 28]. Bu performans, gelistirilen yaklagimin etkinligini gostermektedir.

Klinik etkiler:

« Nesnel tani: Oznel degerlendirmelerin yerine gecen objektif yontemler sunmaktadir. Bu yaklagim,
tan1 slireclerinin giivenilirligini artirmaktadir.

+ Yiitksek dogruluk: %79.5 dogruluk orani ile dogru tanilamaya destek verebilir.

+ Yeniden iiretilebilirlik: Giiclii metodoloji ile sonuglarin tekrarlanabilirligi garanti edilmektedir.

7.1 Calismanin Kisitliliklar:

Bu calismanin bazi énemli kisithiliklar: bulunmaktadir:

Veri seti kisithiliklari:

 Yas araligi: Sadece 7-12 yag arasi ¢cocuklar dahil edilmistir. Ergen ve yetiskin DEHB popiilasyonu
icin genellenebilirlik sinirlidir.

« Demografik cesitlilik: Etnik, sosyoekonomik ve cografi ¢esitlilik yeterince temsil edilmemis ola-
bilir.

« Komorbiditeler: DEHB ile birlikte goriilen diger nérogelisimsel bozukluklar (otizm, 6grenme gii¢liigii)
dahil edilmemistir.

Metodolojik kisitliliklar:

« Tek veri kaynag1: Sadece IEEE Dataport veri seti kullanilmigtir. Coklu merkezli dogrulama yapil-
mamistir.

« EEG kalitesi: 128 6rnekleme frekans: kullanilmigtir. Bu frekans, EEG sinyallerinin detayli analizi
icin yeterli degildir.

+ Real-time uygulama: Algoritmanin gercek zamanl klinik uygulamasi test edilmemistir.

Klinik kisitliliklar:
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« Giinliik varyasyon: EEG kayitlar tek seferde alinmus, giinliik ve haftalik varyasyonlar dikkate alin-

mamigtir.

» Klinik validation: Algoritmanin gercek klinik ortamda doktor kararlari ile karsilastirilmasi yapil-

mamigtir.

KAYNAKCA

[1]

(2]

[10]

[11]

[12]

[13]

Anika Alim and Masudul H. Imtiaz. “Automatic Identification of Children with ADHD from EEG
Brain Waves”. In: Signals 4.1 (Feb. 2023), pp. 193-205. 1SsN: 2624-6120. DOI: 10.3390/signals4010010.
URL: http://dx.doi.org/10.3390/signals4010010.

Nizar Alsharif, Mosleh Hmoud Al-Adhaileh, and Mohammed Al-Yaari. “Accurate Identification of
Attention-deficit/Hyperactivity Disorder Using Machine Learning Approaches”. In: Journal of Dis-
ability Research 3.1 (Jan. 2024). 1ssN: 1658-9912. por: 10.57197/jdr-2023-0053. URL: http://dx.doi.org/
10.57197/jdr-2023-0053.

Nizar Alsharif, Mosleh Hmoud Al-Adhaileh, and Mohammed Al-Yaari. “Diagnosis of attention deficit
hyperactivity disorder: A deep learning approach”. In: AIMS Mathematics 9.5 (2024), pp. 10580—
10608. 1SSN: 2473-6988. poIL: 10.3934/math.2024517. URL: http://dx.doi.org/10.3934/math.2024517.
Lou Ancillon, Mohamed Elgendi, and Carlo Menon. “Machine Learning for Anxiety Detection Us-
ing Biosignals: A Review”. In: Diagnostics 12.8 (July 2022), p. 1794. 1ssN: 2075-4418. por: 10.3390/
diagnostics12081794. URL: http://dx.doi.org/10.3390/diagnostics12081794.

Omneya Attallah. “ADHD-AID: Aiding Tool for Detecting Children’s Attention Deficit Hyperactiv-
ity Disorder via EEG-Based Multi-Resolution Analysis and Feature Selection”. In: Biomimetics 9.3
(Mar. 2024), p. 188. 1ssN: 2313-7673. po1: 10.3390/biomimetics9030188. URL: http://dx.doi.org/10.
3390/biomimetics9030188.

Lucia CasellesPina et al. “A systematic review on the application of machine learning models in psy-
chometric questionnaires for the diagnosis of attention deficit hyperactivity disorder”. In: European
Journal of Neuroscience 60.3 (Feb. 2024), pp. 4115-4127. 1ssN: 0953-816X. por: 10.1111/ejn.16288. URL:
http://dx.doi.org/10.1111/ejn.16288.

Nishant Chauhan and Byung-Jae Choi. “Regional Contribution in Electrophysiological-Based Clas-
sifications of Attention Deficit Hyperactive Disorder (ADHD) Using Machine Learning”. In: Com-
putation 11.9 (Sept. 2023), p. 180. 1ssN: 2079-3197. DoOI: 10.3390/computation11090180. URL: http:
//dx.doi.org/10.3390/computation11090180.

Tianhua Chen et al. “Automatic Diagnosis of Attention Deficit Hyperactivity Disorder Using Ma-
chine Learning”. In: Applied Artificial Intelligence 35.9 (June 2021), pp. 657-669. 1ssN: 0883-9514. DOI:
10.1080/08839514.2021.1933761. URL: http://dx.doi.org/10.1080/08839514.2021.1933761.

John B. Colby et al. “Insights into multimodal imaging classification of ADHD”. In: Frontiers in Sys-
tems Neuroscience 6 (2012). 1SsN: 1662-5137. por: 10.3389/fnsys.2012.00059. URL: http://dx.doi.org/
10.3389/fnsys.2012.00059.

Milena Cukié, Victoria Lépez, and Juan Pavon. “Classification of Depression Through Resting-State
Electroencephalogram as a Novel Practice in Psychiatry: Review”. In: Journal of Medical Internet
Research 22.11 (Nov. 2020), e19548. 1ssN: 1438-8871. por: 10.2196/19548. URL: http://dx.doi.org/10.
2196/19548.

Laura Dubreuil-Vall, Giulio Ruffini, and Joan A. Camprodon. “Deep Learning Convolutional Neural
Networks Discriminate Adult ADHD From Healthy Individuals on the Basis of Event-Related Spec-
tral EEG”. In: Frontiers in Neuroscience 14 (Apr. 2020). 1ssN: 1662-453X. por: 10.3389/fnins.2020.00251.
URL: http://dx.doi.org/10.3389/fnins.2020.00251.

Mustafa Yasin Esas and Fatma Latifoglu. “Detection of ADHD from EEG signals using new hybrid
decomposition and deep learning techniques”. In: Journal of Neural Engineering 20.3 (June 2023),
p- 036028. 1ssN: 1741-2560. DOI: 10.1088/1741-2552/acc902. URL: http://dx.doi.org/10.1088/1741-
2552/acc902.

Taban Eslami et al. “Machine Learning Methods for Diagnosing Autism Spectrum Disorder and
Attention- Deficit/Hyperactivity Disorder Using Functional and Structural MRI: A Survey”. In: Fron-
tiers in Neuroinformatics 14 (Jan. 2021). 1SsN: 1662-5196. po1: 10.3389/fninf.2020.575999. URL: http:
//dx.doi.org/10.3389/fninf.2020.575999.


https://doi.org/10.3390/signals4010010
http://dx.doi.org/10.3390/signals4010010
https://doi.org/10.57197/jdr-2023-0053
http://dx.doi.org/10.57197/jdr-2023-0053
http://dx.doi.org/10.57197/jdr-2023-0053
https://doi.org/10.3934/math.2024517
http://dx.doi.org/10.3934/math.2024517
https://doi.org/10.3390/diagnostics12081794
https://doi.org/10.3390/diagnostics12081794
http://dx.doi.org/10.3390/diagnostics12081794
https://doi.org/10.3390/biomimetics9030188
http://dx.doi.org/10.3390/biomimetics9030188
http://dx.doi.org/10.3390/biomimetics9030188
https://doi.org/10.1111/ejn.16288
http://dx.doi.org/10.1111/ejn.16288
https://doi.org/10.3390/computation11090180
http://dx.doi.org/10.3390/computation11090180
http://dx.doi.org/10.3390/computation11090180
https://doi.org/10.1080/08839514.2021.1933761
http://dx.doi.org/10.1080/08839514.2021.1933761
https://doi.org/10.3389/fnsys.2012.00059
http://dx.doi.org/10.3389/fnsys.2012.00059
http://dx.doi.org/10.3389/fnsys.2012.00059
https://doi.org/10.2196/19548
http://dx.doi.org/10.2196/19548
http://dx.doi.org/10.2196/19548
https://doi.org/10.3389/fnins.2020.00251
http://dx.doi.org/10.3389/fnins.2020.00251
https://doi.org/10.1088/1741-2552/acc902
http://dx.doi.org/10.1088/1741-2552/acc902
http://dx.doi.org/10.1088/1741-2552/acc902
https://doi.org/10.3389/fninf.2020.575999
http://dx.doi.org/10.3389/fninf.2020.575999
http://dx.doi.org/10.3389/fninf.2020.575999

[14]

[15]

[16]

[20]

[21]

[22]

43

Sina Ghiassian et al. “Using Functional or Structural Magnetic Resonance Images and Personal Char-
acteristic Data to Identify ADHD and Autism”. In: PLOS ONE 11.12 (Dec. 2016). Ed. by Leontios Had-
jileontiadis, €0166934. 1ssN: 1932-6203. po1: 10.1371/journal.pone.0166934. URL: http://dx.doi.org/
10.1371/journal.pone.0166934.

Heledd Hart et al. “Pattern classification of response inhibition in ADHD: Toward the development
of neurobiological markers for ADHD”. In: Human Brain Mapping 35.7 (Oct. 2013), pp. 3083-3094.
ISSN: 1065-9471. por: 10.1002/hbm.22386. URL: http://dx.doi.org/10.1002/hbm.22386.

Ngumimi Karen Iyortsuun et al. “A Review of Machine Learning and Deep Learning Approaches
on Mental Health Diagnosis”. In: Healthcare 11.3 (Jan. 2023), p. 285. 1sSN: 2227-9032. por: 10.3390/
healthcare11030285. URL: http://dx.doi.org/10.3390/healthcare11030285.

HosseinR Jahanshahloo et al. “Automated and ERP-Based Diagnosis of Attention-Deficit Hyper-
activity Disorder in Children”. In: Journal of Medical Signals &amp; Sensors 7.1 (2017), p. 26. ISSN:
2228-7477. por: 10.4103/2228-7477.199152. URL: http://dx.doi.org/10.4103/2228-7477.199152.

Pegah Kassraian-Fard et al. “Promises, Pitfalls, and Basic Guidelines for Applying Machine Learning
Classifiers to Psychiatric Imaging Data, with Autism as an Example”. In: Frontiers in Psychiatry 7
(Dec. 2016). 1ssN: 1664-0640. DoI: 10.3389/fpsyt.2016.00177. URL: http://dx.doi.org/10.3389/{psyt.
2016.00177.

“Junwon Kim, Seungheon Yang, and Sooin Han. “A MACHINE LEARNING APPROACH TO PRE-
DICT THE THERAPEUTIC EFFICACY OF MOBILE NEUROFEEDBACK IN CHILDREN WITH ADHD”.
In: International Journal of Neuropsychopharmacology 28.Supplement_1 (Feb. 2025), pp. i113-1114.
ISSN: 1461-1457. por: 10.1093/ijnp/pyae059.196. URL: http://dx.doi.org/10.1093/ijnp/pyae059.196.
Ana M. Maitin, Juan Pablo Romero Muiioz, and Alvaro José Garcia-Tejedor. “Survey of Machine
Learning Techniques in the Analysis of EEG Signals for Parkinson’s Disease: A Systematic Review”.
In: Applied Sciences 12.14 (July 2022), p. 6967. 1ssN: 2076-3417. po1: 10.3390/app12146967. URL: http:
//dx.doi.org/10.3390/app12146967.

Ana Maria Maitin, Alvaro José Garcia-Tejedor, and Juan Pablo Romero Mufioz. “Machine Learn-
ing Approaches for Detecting Parkinson’s Disease from EEG Analysis: A Systematic Review”. In:
Applied Sciences 10.23 (Dec. 2020), p. 8662. I1sSN: 2076-3417. por: 10.3390/app10238662. URL: http:
//dx.doi.org/10.3390/app10238662.

Ying Mao et al. “Advanced machine learning techniques reveal multidimensional EEG abnormalities
in children with ADHD: a framework for automatic diagnosis”. In: Frontiers in Psychiatry 16 (Feb.
2025). 1sSN: 1664-0640. DOI: 10.3389/fpsyt.2025.1475936. URL: http://dx.doi.org/10.3389/fpsyt.2025.
1475936.

Ali Motie Nasrabadi et al. EEG data for ADHD / Control children. 2020. po1: 10.21227/rzth-zn36. URL:
https://dx.doi.org/10.21227/rzfh-zn36.

Priyadarshini Natarajan and Samaneh Madanian. “Detecting Brain activity in ADHD children and
healthy controls using Machine Learning Techniques”. In: Proceedings of the 2024 Australasian Com-
puter Science Week. ACM. Jan. 2024, pp. 69—74. po1: 10.1145/3641142.3641156. URL: http://dx.doi.org/
10.1145/3641142.3641156.

Sou Nobukawa et al. “Classification Methods Based on Complexity and Synchronization of Elec-
troencephalography Signals in Alzheimer’s Disease”. In: Frontiers in Psychiatry 11 (Apr. 2020). ISSN:
1664-0640. Do1: 10.3389/fpsyt.2020.00255. URL: http://dx.doi.org/10.3389/fpsyt.2020.00255.

Su Mi Park et al. “Identification of Major Psychiatric Disorders From Resting-State Electroencephalog-
raphy Using a Machine Learning Approach”. In: Frontiers in Psychiatry 12 (Aug. 2021). 1ssN: 1664-
0640. poI: 10.3389/fpsyt.2021.707581. URL: http://dx.doi.org/10.3389/fpsyt.2021.707581.

Xiaolong Peng et al. “Extreme Learning Machine-Based Classification of ADHD Using Brain Struc-
tural MRI Data”. In: PLoS ONE 8.11 (Nov. 2013). Ed. by Dewen Hu, €79476. 1ssN: 1932-6203. por:
10.1371/journal.pone.0079476. URL: http://dx.doi.org/10.1371/journal.pone.0079476.

Maham Saeidi et al. “Neural Decoding of EEG Signals with Machine Learning: A Systematic Review”.
In: Brain Sciences 11.11 (Nov. 2021), p. 1525. 1sSN: 2076-3425. po1: 10.3390/brainsci11111525. URL:
http://dx.doi.org/10.3390/brainsci11111525.

Zhongxia Shen et al. “Aberrated Multidimensional EEG Characteristics in Patients with Generalized
Anxiety Disorder: A Machine-Learning Based Analysis Framework”. In: Sensors 22.14 (July 2022),
p- 5420. 1SSN: 1424-8220. Do1: 10.3390/522145420. URL: http://dx.doi.org/10.3390/s22145420.


https://doi.org/10.1371/journal.pone.0166934
http://dx.doi.org/10.1371/journal.pone.0166934
http://dx.doi.org/10.1371/journal.pone.0166934
https://doi.org/10.1002/hbm.22386
http://dx.doi.org/10.1002/hbm.22386
https://doi.org/10.3390/healthcare11030285
https://doi.org/10.3390/healthcare11030285
http://dx.doi.org/10.3390/healthcare11030285
https://doi.org/10.4103/2228-7477.199152
http://dx.doi.org/10.4103/2228-7477.199152
https://doi.org/10.3389/fpsyt.2016.00177
http://dx.doi.org/10.3389/fpsyt.2016.00177
http://dx.doi.org/10.3389/fpsyt.2016.00177
https://doi.org/10.1093/ijnp/pyae059.196
http://dx.doi.org/10.1093/ijnp/pyae059.196
https://doi.org/10.3390/app12146967
http://dx.doi.org/10.3390/app12146967
http://dx.doi.org/10.3390/app12146967
https://doi.org/10.3390/app10238662
http://dx.doi.org/10.3390/app10238662
http://dx.doi.org/10.3390/app10238662
https://doi.org/10.3389/fpsyt.2025.1475936
http://dx.doi.org/10.3389/fpsyt.2025.1475936
http://dx.doi.org/10.3389/fpsyt.2025.1475936
https://doi.org/10.21227/rzfh-zn36
https://dx.doi.org/10.21227/rzfh-zn36
https://doi.org/10.1145/3641142.3641156
http://dx.doi.org/10.1145/3641142.3641156
http://dx.doi.org/10.1145/3641142.3641156
https://doi.org/10.3389/fpsyt.2020.00255
http://dx.doi.org/10.3389/fpsyt.2020.00255
https://doi.org/10.3389/fpsyt.2021.707581
http://dx.doi.org/10.3389/fpsyt.2021.707581
https://doi.org/10.1371/journal.pone.0079476
http://dx.doi.org/10.1371/journal.pone.0079476
https://doi.org/10.3390/brainsci11111525
http://dx.doi.org/10.3390/brainsci11111525
https://doi.org/10.3390/s22145420
http://dx.doi.org/10.3390/s22145420

44

[30]

[31]

[32]

[33]

Efe Ali MERT

Ortal Slobodin, Inbal Yahav, and Itai Berger. “A Machine-Based Prediction Model of ADHD Using
CPT Data”. In: Frontiers in Human Neuroscience 14 (Sept. 2020). 1ssN: 1662-5161. por: 10.3389/fnhum.
2020.560021. URL: http://dx.doi.org/10.3389/fnhum.2020.560021.

P.S. Sologub. “Application of Machine Learning to Physiological and Neuroanatomical Data in the
Field of ADHD Diagnosis”. In: Journal of Modern Foreign Psychology 13.2 (July 2024), pp. 84-91. 1s5N:
2304-4977. po1: 10.17759/jmfp.2024130208. URL: http://dx.doi.org/10.17759/jmfp.2024130208.

Swati Sharma Swati Sharma. “An Approach to Improve Brain Disorder Using Machine Learning
Techniques”. In: IOSR Journal of Computer Engineering 11.2 (2013), pp. 77-84. 1sSN: 2278-8727. DOI:
10.9790/0661-01127784. URL: http://dx.doi.org/10.9790/0661-01127784.

Amirali Vahid et al. “Deep Learning Based on Event-Related EEG Differentiates Children with ADHD
from Healthy Controls”. In: Journal of Clinical Medicine 8.7 (July 2019), p. 1055. 1ssN: 2077-0383. DoTI:
10.3390/jcm8071055. URL: http://dx.doi.org/10.3390/jcm8071055.

Yanli Zhang-James et al. “Machine Learning and MRI-based Diagnostic Models for ADHD: Are We
There Yet?” In: Journal of Attention Disorders 27.4 (Jan. 2023), pp. 335-353. 1SsN: 1087-0547. DOI:
10.1177/10870547221146256. URL: http://dx.doi.org/10.1177/10870547221146256.


https://doi.org/10.3389/fnhum.2020.560021
https://doi.org/10.3389/fnhum.2020.560021
http://dx.doi.org/10.3389/fnhum.2020.560021
https://doi.org/10.17759/jmfp.2024130208
http://dx.doi.org/10.17759/jmfp.2024130208
https://doi.org/10.9790/0661-01127784
http://dx.doi.org/10.9790/0661-01127784
https://doi.org/10.3390/jcm8071055
http://dx.doi.org/10.3390/jcm8071055
https://doi.org/10.1177/10870547221146256
http://dx.doi.org/10.1177/10870547221146256

	Giriş
	Metodoloji
	Veri seti ve ön işleme
	EEG kayıt parametreleri
	60 Hertz standardında ön işleme adımları

	Gelişmiş topluluk makine öğrenmesi yaklaşımı
	Temel modeller
	Topluluk (Ensemble) teknikleri

	Çoklu karmaşıklık ölçümü yöntemleri
	Geliştirilmiş Higuchi Fraktal Boyutu (Enhanced HFD)
	Higuchi Fraktal Boyutu Detaylı Formülü
	Güç Spektral Özellikleri (Power Spectral Features)
	Power Spectral Features Detaylı Formülü
	Hjorth Parametreleri
	Hjorth Parametreleri Detaylı Formülü
	İstatistiksel Özellikler (Statistical Features)
	Statistical Features Detaylı Formülü
	Zero-Crossing Rate Detaylı Formülü

	Makine öğrenmesi metodolojisi
	Rastgele Orman (Random Forest) Sınıflandırıcısı
	Destek Vektör Makinesi (SVM) Sınıflandırıcısı
	Lojistik Regresyon Sınıflandırıcısı
	Gradyan Yükseltme Sınıflandırıcısı
	AdaBoost Sınıflandırıcısı

	Çapraz doğrulama stratejisi
	Eğitim, doğrulama ve test kümelerinin oluşturulması
	Parametre optimizasyonu ve hiperparametre ayarlama
	Rastgele Orman (Random Forest) Optimizasyonu
	Lojistik Regresyon (Logistic Regression) Optimizasyonu
	Destek Vektör Makinesi (SVM) Optimizasyonu
	Gradyan Yükseltme (Gradient Boosting) Optimizasyonu
	AdaBoost Optimizasyonu
	Özellik Seçimi Optimizasyonu
	Topluluk Parametreleri Optimizasyonu


	Bulgular
	Topluluk modellerin karşılaştırmalı performans analizi
	Özellik mühendisliği ve özellik seçimi sonuçları
	Özellik formülleri özeti
	Çoklu karmaşıklık analizi özeti
	60 Hertz standardında ön işleme sonuçları
	Çapraz doğrulama ve istatistiksel doğrulama

	Özellik Önem Derecesi Hesaplama Metodolojisi
	Önem Derecesi Hesaplama Yöntemleri
	1. Random Forest Gini Importance
	2. Permutation Importance
	3. SHAP (SHapley Additive exPlanations) Values
	4. Önem Derecesi Normalizasyonu
	5. İstatistiksel Doğrulama

	Önem Derecesi Hesaplama Algoritması
	Önem Derecesi Yorumlama Kriterleri
	Bu Çalışmada Kullanılan Önem Derecesi Metodolojisi
	Önem Derecesi Hesaplama Sonuçları

	Beyin Topografisi ve EEG Kanal Önem Analizi
	HFD Tomografi Analizi - En Belirleyici EEG Kanalları
	Beyin Bölgeleri Bazında Özellik Önem Analizi

	Tartışma
	Sonuç
	Çalışmanın Kısıtlılıkları

	KAYNAKÇA

